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1. Unique characteristics warrant
special treatment

Physics-based ground-motion simulation can provide
predictions of crustal earthquake ground-motion in-
tensity metrics in New Zealand which are better than
empirical ground-motion models. This study aims to
extend this level of performance to subduction inter-
face and slab earthquakes which have unique source
rupture and travel path characteristics:

Interface earthquakes:

e Rupture interface at interplate boundary

e Effect of subducted sediment and seamounts

e Potential for very large ruptures (Figure 1-3)
Slab earthquakes:

e Deep ruptures within descending subducted slab
e Occur in high-stress/temperature environments

e Effect of volcanic arc on energy attenuation
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Figure 1: Rupture model for 2004 M,,9.2 Sumatra earthquake
(Ji 2005)
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Figure 2: Rupture model for 2010 M,,8.8 Maule earthquake
(Lorito et al. 2011)

Figure 3: Rupture model for 2011 M,,9.0 Tohoku earthquake
(Hayes 2013)

2. Methodology

A mixed-effects regression approach, in which residu-
als are partitioned based on causative effects was used
in several portions of this study:

e Analysis of a catalogue of finite-fault models to in-
form models for subduction ruptures

e Analysis of empirical ground-motion model predic-
tions to inform models for volcanic arc path eflects

e Validation of simulation predictions for subduction
carthquake ground-motions using the new models

The general form of the equation is:

mIM. = fos+a+ 0B, + oW, (1)

where In I M., is the natural logarithm of the refer-
ence intensity metric (IM); f.s is the median of the
predicted logarithmic IM for event, e, and site, s, ei-
ther from a simulation or empirical GMM: a is the
predictive model bias; 0 B, is the between-event resid-
ual with zero mean and variance 7°; and dW,, is the
within-event residual with zero mean and variance ¢2.

3. Models for rupture characterstics

To gain insights on systematic differences between
crustal, interface, and slab earthquake source rup-
tures, the models contained in SRCMOD (Mai et al.
2014), an online catalogue of finite-fault rupture mod-
els, were analysed. The variations of the between-
event residuals with magnitude and hypocentre depth
for these three tectonic classifications are shown in
Figure 4-5. By comparing between-event residuals of
risetime and relative rupture velocity and the depen-
dence on hypocentre depth and magnitude, it was pos-
sible to infer systematic differences between crustal,
interface, and slab ruptures.
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Figure 4: Between-event residuals, d B, for risetime
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Figure 5: Between-event residuals, 0 B¢, for rupture velocity

New models for subduction earthquake ruptures were
developed based on the observed trend for residuals of
risetime and relative rupture velocity:

Ao =25+ 0.5 x depth (2)
Ao ga = D0 + 1.5 X depth (3)
Rup.velocity;; = 70% x (3 (4)

Rup.velocity ., = 90% x (3 (5)

where [ is the shear wave velocity at the source and
Ao is stress parameter. (Rup.velocity,,4; = 80% X 3,

Ao 11 = 50 bar)

4. Models for path effects

To account for greater backarc anelastic attenuation
determined from analysis of empirical ground-motion
models, a record-specific adjustment factor, ¢ was
computed based on the absolute value of the source-to-
site azimuth from the backarc, 6, and a source-specific
adjustment factor n was computed based on the source
hypocentre depth, where:

—0.3, for 0 < 6 < &0
Gi f.stab = 1—0.3 + 0.03(0 — 80), for 80 < 6 < 100
0.3, for 100 < 8 < 180
(6)
0, for 0 < depth < 40

Nifsiap = 1(depth — 40)/60, for 40 < depth < 100
1, for 100 < depth

(7)
These adjustment factors were used to modify the

rock-quality factors () p and (Qg, which control anelas-
tic attenuation in the HFE simulation component:

Qif,slab = () X (1 + ¢z’f,slab77if,31@b) (8>

5. Simulation validation

The new subduction models were implemented within
the hybrid broadband ground-motion simulation ap-
proach developed by Graves and Pitarka 2010, 2015,
2016. Ground-motion predictions were validated using
high-quality small magnitude subduction earthquake
oround-motions in New Zealand. The geospatial dis-
tribution of earthquakes and stations used for vali-
dation are shown in Figure 6—only earthquakes and
stations with atleast three associated high-quality ob-
served ground-motion records were considered.
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Figure 6: Validation data set; left: interface earthquakes; right:
slab earthquakes

6. Results and next steps

The predictions for subduction earthquakes done with
the new subduction simulation models show that the
simulations are performing well for subduction earth-
quakes. The simulations are able to provide predic-
tions for small magnitude subduction earthquakes in
New Zealand which are more accurate than global
empirical ground-motion models for subduction earth-
quakes. The simulations are now able to provide com-
parable levels of predictive accuracy for small mag-
nitude subduction and crustal earthquakes in New
Zealand.

Investigation of the spatial distribution of between-
event and systematic site-to-site residuals indicates
that some regional trends in prediction misfit persist
(Figure 7 and 8). In particular, there appears to be
over-prediction for sites located along the forearc and
for deep slab events in the Taupo volcanic zone.
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Figure 7: Between-event residuals, 0 B¢, for peak ground acceler-

ation (PGA); left: interface ground-motions; right: slab ground-

motions
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Figure 8: Systematic site-to-site residuals (the portion of dW g
ascribed to systematic site effects), S2S§, for peak ground ac-
celeration (PGA); left: interface ground-motions; right: slab

ground-motions

Future work will focus on:

e Reduction of the observed regional residual trends
with tuning of the volcanic arc-based modifications
to the rock-quality factors (Jp and (Jg

e Eixtend the models validated on small magnitudes to
large magnitude and megathrust scenario ruptures
of subduction earthquakes



