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ABSTRACT 

 

Earthquake ground motions recorded at rock sites can be used to reduce seismic hazard 

uncertainty for dams and other critical infrastructure on rock; however, few ground motion 

records exist from known rock sites because most seismic stations are on soil or lack measured 

shear wave velocities. In this study, a dataset of California ground motions is examined to 

identify additional instrumented “Very Dense Soil” and “Soft Rock” sites which may actually be 

“Rock”. This approach offers a cost- and time-efficient alternative to installing new seismic 

stations. To identify possible rock sites, partially-crossed linear mixed-effects regression is used 

to compute site residuals from empirical ground-motion model predictions and recorded ground 

motions. Based on these site residuals and other site characteristics, machine learning is then 

applied to estimate shear wave velocities at sites without measured velocities. Using these 

estimated shear wave velocities, a ranked list of candidate rock sites is developed. Geophysical 

testing is proposed at a selection of these sites to verify the high estimated shear wave velocities, 

with a focus on sites with many recorded ground motions, as an efficient means to expand the 

catalogue of rock ground motions. 

 

INTRODUCTION 

 

From review of the PRJ-3031 ground motion database (Ji et al 2025), it was observed that 

measured time-averaged shear-wave velocity in the top 30 meters, VS30, for seismic stations in 

California can differ significantly from proxy VS30 values, which are inferred from available 

geological data. For example, certain sites have measured VS30 greater than 1000 m/s and have 

proxy VS30 of only 350 m/s. Furthermore, very few sites have proxy VS30 values greater than 900 

m/s. Based on these observations, it was inferred that there may be stations with significantly 

higher VS30 than is currently recognized by the proxy values, i.e., unrecognized rock sites. 

Reclassification of these existing seismic stations offers a practical and efficient approach to 

expand the database of rock ground motions and would allow for improved seismic hazard 

estimates for rock sites. 
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BACKGROUND 

 

Dam owners typically rely on ergodic site adjustment factors to represent site conditions within 

ground motion models, including at rock sites. Commonly used approaches incorporate the 

NGA-West2 ground motion models (e.g., Campbell and Bozorgnia 2014) and hard-rock 

adjustments (e.g., Ktenidou and Abrahamson 2016). While these models represent the current 

state of practice, they are largely based on empirical data from relatively few rock sites in 

California. 

Advancements in ground motion modeling are trending toward non-ergodic approaches 

that account for location-specific source, path, and site effects. One method is the partially non-

ergodic model, where the site term is specific to the location (Stewart et al. 2017). Recent 

applications in dam engineering have demonstrated the feasibility of this approach using site-

specific ground motion recordings at rock sites, where linear response allows for the use of weak 

ground motion records to make inferences for strong ground-motion response (e.g., Vecchietti et 

al. 2019, Hassani et al. 2023). 

Despite these advances, it is rare for site-specific ground motion records to be available at 

a given dam site. For these cases, ground motion recordings from nearby rock sites, not 

necessarily at the dam site itself, can still support more accurate seismic hazard calculations by 

enabling estimation of non-ergodic site terms. Therefore, identifying additional earthquake 

records from rock sites has the potential to reduce the uncertainty in seismic hazard analysis for 

dam sites on rock in California. 

 

METHODS 

 

Observed earthquake ground motions and site data. Earthquake ground-motion records from 

version 2 of the PRJ-3031 ground motion database (PRJ-3031) (Ji et al 2025) were used for this 

analysis. PRJ-3031 includes 269 300 records from 2 582 earthquakes which have occurred in 

California and neighbouring regions between 1999 and 2021. These events were recorded at over 

1061 strong-motion sites distributed throughout California. Only events with moment 

magnitudes ranging from 3.2 to 7.2 and focal depths shallower than 20 km are included in the 

dataset. 

Ground-motion records are paired with detailed source, path, and site metadata. The database 

incorporates a compilation of site-specific parameters such as VS30. Critically, there is both 

measured and inferred proxy values for VS30, with the proxy values having only limited 

accuracy. It was hypothesized that certain unmeasured sites may have higher VS30  than indicated 

by the proxy values, and thus presents an untapped resource which could improve accuracy of 

seismic hazard analysis for concrete dam sites in California. 

The following filtering steps were applied to the PRJ-3031 ground motion database to 

develop a curated dataset suitable for the mixed-effects regression analysis: 

 



1. Frequency content filters: 

a. Removed 82 139 records where the high-pass corner frequency (1.25 x high-pass 

cutoff) exceeded 0.5 Hz. 

b. Removed 172 926 records where the low-pass corner frequency (1.25 x low-pass 

cutoff) was less than 15 Hz. 

2. Site-based filters: 

a. Removed 75 records with VS30 values less than 180 m/s. 

b. Removed 8 records from the following site IDs: YB.MOJA.HH, YB.MOJA.BH. 

3. Event-based filters: 

a. Removed 17 records with moment magnitude less than 3.5. 

b. Removed 15 324 records with rupture distance greater than 100 km. 

c. Removed 136 records with hypocenter depth less than 0 km. 

d. Removed 312 records with hypocenter depth greater than 20 km. 

4. Quality control flag filters: 

a. Removed 1715 records flagged as outliers. 

b. Removed 278 records flagged for including multiple earthquakes. 

c. Removed 953 records flagged for channel quality issues. 

5. Instrument hierarchy filter: 

a. Removed 174 records from collocated instruments based on the following sensor 

hierarchy preference: HN, HH, EH, EN, SH, DH, BH, BN, CN, SN. 

6. Minimum data requirement filter: 

a. Mixed-effects regression was done enforcing 3 high-quality ground motions per 

site and per earthquake. This removed 1755 records from events and sites with 

fewer than three records. 

 

The filtered dataset contained 11 992 records from 782 events and 1060 unique sites; the 

geospatial extent of the dataset used in the mixed-effects regression is shown in Figure 1. 

 

Predicted motions from empirical ground-motion model. For each observed ground-motion 

record, corresponding ground-motion predictions were made using the empirical ground-motion 

model of Chiou and Youngs (2014). Predictions were made using source, path, and site metadata 

available from the PRJ-3031 database (Ji et al 2025). A reference VS30 of 760 m/s was used to 

make predictions for all sites such that systematic site residuals would include the effect of misfit 

between the reference VS30 (760 m/s) and “true” site VS30. It was hypothesized that these 

systematic site residuals would be informative features on which the machine learning model 

could be trained. 

 



 

Figure 1. Ground motion data included in the partially-crossed linear mixed-effects 

regression analysis. Red circles: earthquake epicenters, blue triangles: seismic stations, 

black lines: ray paths. 

 



Partially-crossed linear mixed-effects regression. A partially-crossed linear mixed-effects 

regression was applied to partition prediction residuals into various components of variability 

(Bates et al. 2014, Stafford 2014). The language and notation used is that of Atik et al (2010) for 

ground-motion prediction validation which follows the general form of a GMM for an event, e, 

and site, s, pairing, explained subsequently. The general and expanded forms of the equation, 

presented with the notation of Atik et al (2010), are: 

 

𝛥 = 𝑙𝑛(𝐼𝑀𝑒𝑠) − 𝑓𝑒𝑠 = 𝑎 + 𝛿𝐵𝑒 + 𝛿𝑆2𝑆𝑠 + 𝛿𝑊𝑒𝑠
0  

 

where Δ is the total prediction residual; ln(IMes) is the natural logarithm of the observed intensity 

measure (IM) for event e and site s; and fes is the median (for the case without parameter 

uncertainty there is a single IM prediction) of the predicted logarithmic IM. a is the model bias, 

δBe is the between-event residual for event e, δS2Ss is the systematic site-to-site residual for site 

s, and δW0
es is the “remaining” within-event residual. 

   

    

Figure 2. Measured minus proxy VS30 for all 196 seismic stations with measured VS30 

values. The 864 sites without measured VS30 are shown as points. Top left: δS2Ss(pSA(1.5 

s)) vs δS2Ss(pSA(0.2 s)), top right: δS2Ss(pSA(1.5 s)) vs δS2Ss(pSA(0.5 s)), bottom left: 

elevation vs δS2Ss(pSA(0.2 s)), and bottom right: elevation vs δS2Ss(pSA(0.5 s)). 



Trends of the misfit between the measured and proxy VS30 values with selected site properties are 

shown in Figure 2. Site properties considered included systematic site-to-site residual of pseudo-

spectral acceleration, pSA, at T = 0.2 s, 0.5 s, and 1.5 s, as well as site elevation. As shown, the 

VS30 misfit exhibits correlations with these site parameters, which were included as predictor 

variables, i.e., features, in the machine learning model. 

 

MACHINE LEARNING MODEL 

 

Selection of model features. To estimate VS30 at stations without measured VS30, a machine 

learning regression model was developed using available site data and the systematic site-to-site 

residuals. Measured VS30 values were used as targets for the model. The method employed an 

XGBoost (Chen and Guestrin 2016) regression model trained on selected features derived from 

the ground motion metadata and residuals from the mixed-effects regression: (i) proxy VS30 

value, (ii) site latitude, longitude, and elevation; and (iii) systematic site-to-site residuals of pSA 

between 0.2 s and 1.5 s. 

 

Model training and validation. The XGBoost model was trained with a parameter grid search 

for optimization. A three-fold cross-validation scheme was used to identify the best-performing 

hyperparameters, including tree depth, learning rate, and column and row subsampling rates. The 

final model was trained with optimized parameters using early stopping to prevent overfitting. 

Training and testing datasets were constructed by randomly shuffling the measured 

dataset and partitioning it into a training set (150 samples) and a test set (46 remaining measured 

samples). The quantity of training, testing, and unmeasured data (i.e., sites) is shown in Table 1. 

Model performance was assessed, as shown in Figure 3, by comparing estimated VS30 values to 

measured VS30 for the testing dataset using root mean squared error, mean absolute error, and 

bias, among other metrics. It was observed that there is relatively high coefficient of 

determination, indicating good performance for the testing dataset, and that the model tends to 

underestimate VS30 in the testing dataset, as indicated by the negative mean bias. 

 

Table 1. Training, testing, and unmeasured data.  

Partitioned Dataset Number of Sites 

Measured VS30 used for Training 150 

Measured VS30 used for Testing 46 

Unmeasured VS30 (candidate rock sites) 864 

 



 

Figure 3. Model performance on the testing dataset. 

 

RESULTS 

 

Estimated VS30 values for unmeasured sites were examined and are compared with measured 

VS30 values in Figure 4. For sites with measured VS30, the measured values are shown. For sites 

without measured data, the estimated values are compared with the proxy values and plotted as a 

function of systematic site-to-site residuals of pSA at 0.2 s and 1.5 s. As shown, the estimated 

values for certain sites significantly exceed the available proxy values. A similar observation is 

made for measured values, which can significantly exceed proxy values at certain measured 

sites. The general trends in estimated and measured VS30 with site parameters, e.g., 

δS2Ss(pSA(1.5 s)), are very similar, which supports the credibility of the model performance and 

estimated VS30. 

 

Candidate rock sites. Stations with estimated VS30 exceeding 850 m/s were screened as 

potential “rock” sites. A subset of these screened stations was then prioritized based on number 

of recorded ground motions, geographic coverage, and estimated VS30. A list of candidate rock 

sites is provided in Table 2 which is intended to guide prioritization of potential geophysical site 

investigations to identify additional rock sites in California. Figure 5 provides the National 

Earthquake Hazards Reduction Program (NEHRP) site classes, based on the measured and 

estimated VS30, for all stations considered in this study. As Figure 5 illustrates, the site VS30 

estimates, if confirmed through field testing, have the potential to significantly expand the 

catalogue of available rock ground motions in California. 



 

   

Figure 4. Top left: available VS30 data in the PRJ-3031 database vs proxy VS30, top right: 

model results showing measured (training and validation data) and estimated VS30 vs proxy 

VS30, bottom left: measured and estimated VS30 vs δS2Ss(pSA(0.2 s)), bottom right: 

measured and estimated VS30 vs δS2Ss(pSA(1.5 s)). 

 

LIMITATIONS 

 

The estimates of VS30 provided in this study are based on limited site metadata and earthquake 

ground-motion prediction residuals and did not consider regional geology. Cross-validation of the 

estimates from this study with regional geological maps would likely provide further insights and 

may motivate prioritization of different sites than those identified in Table 2. 

  



Table 2. Unmeasured sites with estimated VS30 greater than 850 m/s listed in descending 

order of estimated VS30. Sites proposed as priorities for geophysical testing are shown in 

shaded background. 

Site Code Latitude Longitude Proxy VS30 

(m/s) 

Estimated 

VS30 (m/s) 

Number of 

Records 
SLV 33.23854 -115.304 352 1238 3 

HAY 33.70734 -115.639 352 1220 7 

B073 35.9467 -120.472 352 1152 8 
ELS2 33.64907 -117.426 710 1065 6 

B075 35.9292 -120.515 372 1016 8 

B076 35.9398 -120.425 514 993 8 

CAO 37.3485 -121.535 733 993 3 

B921 35.5865 -117.462 710 991 5 

DTP 35.26742 -117.846 710 974 8 

SAO 36.76403 -121.447 352 945 7 

DAW 36.271 -117.592 352 906 19 

KYV 33.92545 -116.173 710 893 11 

TUBB 33.2101 -116.409 710 887 44 

ADS2 38.77446 -122.7 733 880 4 

MONP2 32.892 -116.422 710 869 12 

GVAR1 33.6663 -116.707 751 866 23 

CVS 38.34526 -122.458 519 864 10 

MP21 37.44159 -121.9 229 863 7 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

This study hypothesizes that certain California seismic stations with unmeasured VS30 and 

relatively low proxy VS30 may in fact be rock sites with greater VS30 than is currently reported. 

These sites may present a significant untapped resource to constrain seismic hazard uncertainty 

at rock sites in California. A curated earthquake ground motion dataset and an XGBoost 

regression model were used to identify candidate rock sites by estimating VS30 using site 

metadata and systematic site-to-site residuals from empirical ground motion model predictions. It 

is proposed that targeted geophysical site testing at a subset of prioritized sites be conducted, 

particularly those with numerous high-quality recorded earthquake ground motions and high 

estimated VS30. 
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Figure 5. Measured and estimated NEHRP site classes of all seismic stations considered in 

this study. Sites with estimated VS30 greater than 850 m/s are labelled. 
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